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) CHAPTER 1
s INTRODUCTION
/‘{

Several Radar Target ldentification (RTI) techniques have been developed at

The Ohio State University in recent years. Using the ElectroScience Laboratory

compact range a large data base of coherent RCS measurement has been con-

structed for several types of targets (aircraft, ships, and ground vehicles) at a

variety of polarizations, aspect angles, and frequency bands. This extensive data

) base has been used to analyze the performance of several different classification

: algorithms through the use of computer simulations. .

In order to optimize classification performance, Ksienski/ Jii ch:nclude(l the

radar frequency range should lie in the Rayleigh-resonance frequency range, where

; the wavelength is on the order of or larger than the target size. For aircraft

and ships with general dimensions on the order of 10 meters to 100 meters it

is apparent that the High Frequency (HF) band provides optimal classification

performance. Since existing HF radars are currently being used for detection and

tracking of aircraft and ships of these dimensions, it is natural to further investigate

the possibility of using these existing radars as the measurement devices in a radar
target classification system. —- ( N "/‘ - // /
A general radar target classification system is shown in Figure 1. The external |

environment consists of a target which is to be classified, clutter source(s), noise

K source(s), and possible calibration reference(s). The environment is observed by
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the multifrequency radar through the propagation media. The signal processor
provides radar data which, when combined with a priori knowledge of the external
environment and knowledge of the radar system and propagatioLn media, allows the
estimation of target features to be used for classification. These estimated features
of the unknown target are compared with high accuracy features of several targets
in a catalog set. The classification algorithm provides a measure of the similarity
of the unknown target to each catalog target. The catalog target whose features
most closely represent that of the unknown targets’ features is chosen as the type
of the unknown target.

This study investigated various propagation conditions which allow dificrent
target features to be estimated. These conditions were synthesized by various
channel models. The incorporation of these channel models into a radar target
identification system computer simulation provided estimates of resulting classifi-
calion performance. As a result, the relationship between channel conditions and
classification performance were found.

HF radars are generally catagorized by the propagation mode by which they
are designed to operate, either 1) surface wave or 2) skywave. Each propagation
mode incites different characteristics into the classification system, and therefore
should be investigated independently.

Because of their unique propagation mechanism, surface wave radars have the
ability to look beyond the horizon with detection ranges up to 300 km. Surface
wave attenuation is a function of many parameters, most importantly ground con-
duction and frequency [6]. In order to achieve practical detection ranges for given
transmitted power levels the radar wave usually must propagate over water. Fur-

thermore only a vertically polarized wave propagates significantly, thus limiting
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CHAPTER 1

INTRODUCTION

Several Radar Target Identification (RTI) techniques have been developed at
The Ohio State University in recent years. Using the ElectroScience Laboratory
compact range a large data base of coherent RCS measurement has been con-
structed for several types of targets (aircraft, ships, and ground vehicles) at a
variety of polarizations, aspect angles, and frequency bands. This extensive data
base has been used to analyze the performance of several different classification
algorithms through the use of computer simulations.

In order to optimize classification performance, Ksienski [1] concluded the
radar frequency range should lie in the Rayleigh-resonance frequency range, where
the wavelength is on the order of or larger than the target size. For aircraft
and ships with general dimensions on the order of 10 meters to 100 meters it
is apparent that the High Frequency (HF) band provides optimal classification
performance. Since existing HF radars are currently being used for detection and

tracking of aircraft and ships of these dimensions, it is natural to further investigate

the possibility of using these existing radars as the measurement devices in a radar
target classification system.

A general radar target classification system is shown in Figure 1. The external
environment consists of a target which is to be classified, clutter source(s), noise

source(s), and possible calibration reference(s). The environment is observed by




the multifrequency radar through the propagation media. The signal processor
provides radar data which, when combined with a priori knowledge of the external
environment and knowledge of the radar system and propagation media, allows the
estimation of target features to be used for classification. These estimated features
of the unknown target are compared with high accuracy features of several targets
in a catalog set. The classification algorithm provides a measure of the similarity
of the unknown target to each catalog target. The catalog target whose features
most closely represent that of the unknown targets’ features is chosen as the type
of the unknown target.

This study investigated various propagation conditions which allow diffcrent
target features to be estimated. These conditions were synthesized by various
channel models. The incorporation of these channel models into a radar target
identification system computer simulation provided estimates of resulting classifi-
cation performance. As a result, the relationship between channel conditions and

classification performance were found.

HF radars are generally catagorized by the propagation mode by which they
are designed to operate, either 1) surface wave or 2) skywave. Each propagation
mode incites different characteristics into the classification system, and therefore
should be investigated independently.

Because of their unique propagation mechanism, surface wave radars have the
ability to look beyond the horizon with detection ranges up to 300 km. Surface
wave attenuation is a function of many parameters, most importantly ground con-
duction and frequency [6]. In order to achieve practical detection ranges for given
transmitted power levels the radar wave usually must propagate over water. Fur-

thermore only a vertically polarized wave propagates significantly, thus limiting
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the polarization diversity of our measurement system.

HF skywave radar utilizes ionospheric reflection as the propagation mecha-
nism. The skywave radar has an average detection range of 1000 km to 4000 ki,
which when coupled with an antenna steerable in azimuth up to 120°, provides
coverage of over 15 million square kilometers [12]. The ionosphere supports HF
radio propagation at altitudes of 100 to 500 km and consists of ionized regions
referred to as layers which are commonly labeled D, E, F}, and F». lons at these
altitudes are mainly produced by solar radiation which includes particle radiation,
ultraviolet light, and x-rays. In general, it is the electron density distribution at a
given altitude which eflects the propagation of the EM wave to the greatest extent.

The actual ion distribution at any time is a function of many factors includ-
ing source radiation intensity, angle between zenith and solar radiation rays, ion
distributions, and various ion combination mechanisms as described in Davies [14].
Therefore the ionosphere is continually changing and must be monitored in real-
time to accurately determine its present structure. It is the variation in electron
density with altilude which causes variation in the refractive index and results
in the bending of the ray path and its return to earth. It is important to note
the ionosphere only supports propagation over a limited band of frequencies, and
signals of different frequencies may travel along different ray paths.

The earth’s magnetic field also affects the propagation of the radar wave. The
magnetic field and ionosphere produce a magnetoionic medium which supports
propagation modes with specific polarizi;t.ions. These polarizations are a function
of the magnetic field, parameters of the ionosphere, and the direction of propaga-
tion as given in Davies [14]. As a result, a transmitted wave of a given polarization
may split into two ray paths which may or may not travel the same route to

the target. Therefore, in general, the polarization of the transmitted wave is not
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necessarily the polarization of the wave which illuminates the target, and the po-
larization of the field scattered from the target is not necessarily the polarization
of the return wave at the receive antenna. Researchers such as Pilon and Headrick
[24] have addressed this situation as it applies to the RCS estimation problem.
This phenomena must be carefully investigated when selecting the polarization of

the catalog sets.

C, T, ‘~ta‘;i.yl1,5tl'l.‘,....'.m.’"..“.’.|“’.'"“”‘|.'..‘.'.".'."...“" O0DONOBCINCNSIND

SR A



3 AL AT

AR AR LA AN AN NS A R TR R N 24 u" a'd gt A gtR gt Saly gRTatg gt atac ot ARY 0a 4t @yt fas Bev §a

CHAPTER 11

HF RADAR SIGNAL PROCESSING

2.1 DOPPLER PROCESSING

Many operation HF radars are used for the detection and tracking of targets
on or over ocean waters. A typical radar cell illuminated by a surface wave radar is
shown in Figure 2. The width of the observation cell is determined by the antenna
beamwidth at the radar operating frequency, while the length is determined by
the time gating of the received signal. To observe a cell at a distance Rj, from the

antenna with a cell length AR, the received signal is gated in time with values:

— e (2.1)
c
2AR
T =71+ . (2.2)

where ¢ is the speed of light, and (72 — 71) is the time gate used. With a multi-
frequency radar, the beamwidth of the antenna may change since the radiation
patiern is a function of frequency. Therefore the size of the cell varies with changes
of the radar’s operating frequency.

In operation, the radar transmits a continuum of maodulated pulses at some
given pulse repitition frequency (PRF'). A total of N pulses are transmitted during

the coherent integration time T, where:

N = PRF - T¢. (2.3)
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Figure 2: Surface wave radar cell illumination.
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Therefore N coherent data records are produced from the energy scattered
from the radar cell. These data are Doppler processed to produce a power spectral
density estimate containing N data, with a frequency resolution Tlé and a band-
width from __E.%?j to +£¢§£. Theoretically, greater resolution may be obtained
by increasing of the coherent integration time; however changes in the ionospheric
ray path, sea state, and target place a limit on the practical integration time [22].
The resulting spectra shown in Figure 3 exhibits 1) a return from the target Pr(f)
with induced doppler shift f, 2) two large clutter returns 13+B(f) and P_pg(f) at

+ fg and — fp respectively, and 3) other relatively low power clutter covering the

spectrum.

' 2.2 DOPPLER SPECTRAL ESTIMATE INFORMATION CONTENT

Information contained in the spectral estimate may be used to estimate a
number of target features for classification purposes. Using fr, the relative velocity
of the target may easily be estimated, giving the RTI designer knowledge of the

. probable class of the target (ships, general aircraft, high speed aircraft, etc.). In
addition, estimates of the power returned from the target Pr(f) and the power
returned from some reference Pg(f) may be used to estimate RCS related target
features.

The two large power densities at +fg and —fpg result from electromagnetic

* wave scattering from ocean wave sets of a certain wavelength. The ocean waves
" which excite this Bragg scattering mechanism have a wavelength dependent upon
:3 the radar frequency [15]. As explained in detail by Trisna {15], Barrick [5], and
- others, the amplitude of the Bragg returns are largely dependent upon sea state.

Large variations in the estimates 13+ g(f) and P_ p(f) about some means

(P, p(f)) and (P_pg(f)) may be observed over a given observation period as noted

R " 3 ! i % B 4 - e - .
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by Headrick and Pilon [24]. Therefore the Bragg returns may best be described
as a random process with its mean being a function of the sea state at that time.
An understanding of this process is important if the Bragg lines are to-be used as

a reference in the target feature estimation process.

2.3 STATISTICS OF SPECTRAL COMPONENTS

As discussed, the height of a target return or Bragg line in a given doppler
spectra is only an estimate of the power returned from the respective scatter.
Consider creating (M — 1) additional doppler PSD estimates of the same cell to
give a total of M doppler PSD estimates. Furthermore, create these additional

estimates by observing the cell over a continuous time span tpgg, where
tops = tpst x M (2.4)

as shown in Figure 4. Examples of real data obtained in this manner may be found
in Pilon and Headrick [24].

Note in Figure 4 that each spectra gives a different estimate for each Bragg
peak as well as the target spectral peak. However, by averaging M samples taken
over M consecutive CIT periods (k = 1,...M) one may produce an averaged doppler
PSD as shown in Figure 4. The averaged estimated power returned from the target,
approaching Bragg wave set, and receding Bragg wave set are given by Eq. (2.5),

Eq. (2.6), and Eq. (2.7) respectively.

5M 1 ¥,
Pr(f1) = i Pr(f1) (2.5)
k=1
. 1 M r -
Pip(f) = 35 > *P,plf1) (2.6)
=1
N 1 M .
P_g(f1) = i 'P_p(f1) (2.7)
k=1
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If each of the samples on the right hand side of Eq. (2.5) are independent and
identically distributed, the application of the central limit theorem as discussed in

Degroot [10] gives: -

‘ 1 A _ ) .
A}T»loo ﬁglkpﬂfl)] = 5}1_111001’7]"’(]'1) = (Pr(f1)) (2.8)

where (Pr(f))) is the expected value of the returned power from the target as

discussed earlier. Likewise, application on the central limit theorem to Eq. (2.6)

and Eq. (2.7) yields Eq. (2.9) and Eq. (2.10) respectively.

1 Ly _ 5 M
1i — P = I P = (P 2.
Jim _Mk};] +B(fl)J Jim Pig(fi) = (Pyp(f1) (2.9)
'1 M L ] o
lim | ) “P_pg(fi)| = lim PXy(f1)=(P_p(f1)) (2.10)
Mox LJ\I k=1 ] Moo

Although this implies an infinite observation time which is impractical, it also
implies that we can continually improve the accuracy of our estimates by taking
more samples.

Both the CIT and the observation time must be carefully chosen in order to
satisfy the requirement of independence and identically distributed samples. The
observation time must be selected to assure the identical distribution of samples. A
significant change in target flight path during the observation time may cause the
observed RCS to change and therefore (Pr(f1)) changes voiding the identically
distributed criteria. Likewise a change in sea state during the observation time
may alter (P, g(f;)) and (P_g(f1)) with the same result. In general, however, sea
states may remain unchanged for hours [15]. In addition, significant changes in the
observation path (such as passage of ionospheric disturbance for skywave radars)
limits the observation time. In fact, fluctuations in the ionosphere generally impose

the greatest restriction on the maximum observation time.
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i There is a limit to the shortest possible integration time that produces inde-

pendent samples of the Bragg spectral lines. An experimental study by Barrick
: [13] concluded that an integration time of 25 seconds or greater insures indepen-
't dence of spectra, irregardless of sea state and cell size, at frequencies in the HF

band above T MHz.

The remaining question is, given a CIT of 25 seconds, what is the relationship

, between the standard deviation values of I.’]M(fl ), and f’i\%(fl )s Pf%(f] ), and Af?
4
! As discussed by Barrick [13], without assuming Gaussian statistics, there is little
. to do other that record massive amounts of data and extract empirical results.
: Using a Gaussian assumptions Barrick derived:
4
TN gy = (PR () (2.11)
. Pg (f) VM
%
' where THM(g) S the standard deviation of the random variables given in Eq. (2.6)
B

and Eq. (2.7). Figure 5, from Barrick [13], shows the 90% confidence interval lines
. derived using the same statistical assumption. These curves give the RTI designer
R
‘ insight into the tradeoffs between the observation time and the accuracy of the
]
" estimates P2 (f;) and P (f,). This is important if PM (1) or PM_(f)) are to

+B\J1 -B\J1/): portantal £, gl/1 -B\J1 ‘

. be used in the estimation of target features for classification.
; 2.4 FREQUENCY SELECTIVE FADING
@
) The Doppler spectral estimate resulting from data accumulated via skywave
¥
. propagation is distored to varying degrees by the ionospheric path. The distortion,
R referred to as ionospheric contamination, is a function of parameters that may or
* may not be under the control of the radar operator. It is imparitive, if data from
a’
3’ the resulting spectra are used in an estimation and classification procedure, that
)
N
R
) 13
s

3
N
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the distortion be removed or at least understood so it imay be compensated for in
the process.

Consider a target being illuminated by a single wave which travels along a
single ionospheric path. The ionosphere, which is in constant motion, induces a
Doppler shift on the rate and direction of the ionospheric movement. Now consider
illuminating this target N times by waves which propagate by the same layer whose
relative velocity remained unchanged during the time the data was accumulated

(the CIT). The resulting spectra will be offset in doppler frequency by:

2} 202
foffset = X; + AR (2.12)

where v} is the relative ionospheric velocity with respect to direction of radar wave
propagation during the pass and Apg is the radar wavelength. This phenomena,
referred to as Doppler shifting, is easily detected in the skewing of the spectra as

shown in Figure 6, and can be easily compensated for.

Next, consider the case where the CIT is relatively long such that the relative
velocity of the propagating layer has undergone considerable change. Each pass-
ing wave may have a slightly different doppler component induced by the quickly
changing ionosphere. The resulting contamination of the spectra, known as broad-
ening, is shown in Figure 7.

Spectral broadening is highly undesired for several reasons. First, any reduc-
tion in the amplitude of the target return will make the return more succeptable to
other noise, thus making any target feature estimated from the data less reliahle.
Second, the return from the target may not be significantly greater than the higher
order sea return and noise surrounding it, and thus the target may be easily lost

in the clutter surrounding it. Third, if the target has a Doppler frequency which is
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near a Bragg frequency, the resultant spreading of the Bragg line may essentially 5’5_
cover the target. :
An additional cause of Doppler spreading is multipath propagatian [22]. The ::nl
‘ path or paths the wave takes between the transmit antenna and the target is a ':
]
- l"
function of many radar parameters including frequency, launch angle, and polar- !
ization, as well as real-time ionospheric conditions. Different ionoshperic layers ; v
L
may support propagation of waves of the same frequency. This may result in two ¢
W,
or more waves with diflerent induced doppler shifts both containing information Lt
)
about the target being processed together, with a resulting spectra which exhibits ',::
(]
spreading. '::
u.
Lt
A third cause of ionospheric distortion results from horizontal spacial inho- b
mogenity within a given layer [22]. A ray path utilizes an area of a given layer =l
proportional in size to the beamwidth of the antenna. The larger the beamwidth, o)
J
the larger the area used for refraction, and the greater the effect of the spreading as 3
investigated by George and Marseca [22|. Since beamwidth scales inversely with "
frequency, we recognize that the effect of spacial inhomogenity will decrease at ‘
higher frequencies for propagation via a given layer. The RTI system designer is o
]
interested in an antenna with a minimal beamwidth; however physical size poses o
a design restriction. For example, a beamwidth of 1° may require antenna dimen- i&:
sions on the order of 2 km (12]. 3
)
In order to use doppler spectral data in an estimation process, one first desires =
a measure of the degree of the spectral contamination. In general, the width of the :'f_
Bragg lines gives a reasonable measure of ionospheric contamination [22]. A great .::"'
deal of research has gone into this area as well as the development of processes N
L,
> i3
designed to clean up the distorted spectra [22]. by
An alternate approach is to minimize distortion by judicious selection of radar -
)
‘W~
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parameters. The selection of an observation time will result in a trade-ofl between
resolution and broadening. Since spectral peaks are largely uncorrelated after 25
seconds (see Section 2.3) we desire the shortest CIT above 25 seconds_that meets
the minimum spectral resolution demands of the system. This allows the greatest
number of independent spectra to be amassed in the least total observation time. s
Coherent integration times ranging from 25 seconds to 100 seconds are common.
The amount of disturbance a given ionospheric region is undergoing determines the
degree of spreading for a given CIT. Typically, the E and Eg regions are considered '
most stable but do not always exist. During sunrise and sunset, the ionospheric

regions undergo rapid change and the degree of broadening significantly increases.

The judicious choice of radar operating frequencies can also greatly reduce
the effect of ionospheric contamination. There are however, important trade-ofls
between the number of frequencies over which one may obtain data and the quality
of that data. The RTI system designer desires estiinates of features at a number
of frequencies. Through the use of vertical incidence ionograms and sweep of
frequency backscatter echoes one can determine the frequency bands least likely .
to result in multipath distortion [25].

One possible method the RTI system designer may choose is to use an ex-

A A

isting measure of spectral contamination with a limit, throwing away all spectra
contaminated beyond that limit, and making his estimates and classification de- 4
cision based only on the remaining data. This method is introduced by Georges
in [22]. A second approach is to create feature estimates using all possible spectra
and then weight the features in the classificaton process according to the degree
of distortion of the data from which the features were taken. A third approach

is to estimate features from the doppler spectra whose values are not effected by

[
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Figure 7: Example of Doppler spreading.
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the spreading. All major peaks in the spectra are equally eflected by spreading

(PLU)  (PLU) o4 (PrBU)

such that the ratios Frg N gl 2" m all remain unchanged {23]
Therefore use of these ratio in feature estimation may provide estimates which are

relatively unaffected by Doppler spreading.
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MULTI-FREQUENCY PARAMETER ESTIMATION :
3.1 GENERAL CONSIDERATIONS
All RTI algorithms utilize estimates of various features of the unknown target
to classify the target. Features such as radar cross section, intrinsic target phase,
and target speed may be considered good target descriptors. However, there is a '
trade-off between the number of features used in a system, the cost of the system '
(processing time, etc.), and the resulting classification performance. As a result, .
research has been directed at finding the optimal types and numbers of features :
which result in optimal performance at minimal cost given little or no constraints i
in our ability to obtain estimates of these features {2], [4] and [8]. In an operational
HF radar classification system the numbers and types of estimated features may N,
be severely limited due to the constraints imposed by the HF channel. :
The purpose of this section is to study the constraints the HF radar system im- _
poses on the classification system. Given these constraints, we can then investigate ’
which and how many of the features available should be used to obtain optimal :
performance. Previous research has led to the development of RTI algorithms _
which incorporate multi-frequency measurements of RCS and intrinsic phase in
various forms as classification features. The number and selection of frequencies
to be used has been studied with regard to resulting classification performance [2]. -
Different classification algorithins may place additional restrictions on frequency
21 \
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selection. However, in an operational HF RTI system, the bandwidth is likely to be
constrained by propagation parameters, thereby constraining the number and type
of features estimated. The different propagation modes of surface wave and sky
wave radars result in different types of bandwidth restraints on the two systems,

therefore they are investigated independently.

3.2 FREQUENCY BAND CONSIDERATIONS

The frequency range of a surface wave radar is not limited by the ability of
the system to propagate a wave over a large range, but rather by the propagation
loss which increases with frequency [6]. A target which exists at some range from
the radar site may be illuminated over a frequency range of 5 MHz to 30 MHz;
however the propagation loss at the upper frequencies may result in the backscatter
energy from the target being on the order of the higher-order sea clutter return
or galactic noise level therefore making detection and any estimation of target
features impossible. In fact, the lower signal to noise ratio at higher frequencies
may result in poorer quality estimates of features even though detection is still
possible.

Interference with other users in the HHF band may also preclude the use of some
frequencies. During testing of an experimental system in Florida, interference in
the 8-13 MHz band was a significant factor in system operation [7]. In addition,
backscatter resulting from undesired E - region sky wave propagation periodically
eflected sytem performance at lower frequencies [7]. Therefore there are definite
limits to the frequency band over which estimates of features may be obtained.

Thus once system specifications have been set (type of targets, minimum
range, etc.) the frequency range for a surface wave radar may be determined.

Bands of 6 Mhz to 8 Mhz may expected to be used [7]. From here the RTI
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system designer must determine which features to estimate, at which frequencies
to make the estimates, and how many total estimates are needed in order to achieve
maximum classification performance. -

The frequency band over which an HF sky wave radar can illuminate a target is
dependent on the current ionospheric conditions. Therefore real-time assessment
of the ionosphere is important in order to determine the band. Assessment of
the frequency band may be made through the use of backscatter sounding. A
backscatter sounding consists of radiating a frequency-modulated continous-wave
signal which is swept in frequency, then receiving the backscatter from the earth
after it has made two passes through the ionosphere [25]. An oblique backscatter
sounding is then produced by plotting the return power level as intensity versus
time and frequency. An example is given in Figure 8.

A target appears as a near horizontal line on the resulting plot, as shown in
Figure 8. A direct measurement of the frequency band over which the target is
illuminated may then be made. Typical values range on the order of 1 MHz to
8 MHz.

It must be noted that real-time monitoring of the ionospheric path in order to
determine the largest frequency band(s) over which a target may be observed are
not commonplace. Other uses of sky wave radars such as ocean waveheight and
wind direction maps do incorporate real-time ionospheric measurements to aid in
selection of frequency bands which are most immune to multipath distortion {21],
(23], and [25)].

Considerable research has been and is being conducted in the area of real-
time ionospheric monitoring. It is apparent that these monitoring systems can be
of great aid to an RTI system utilizing the HF sky wave radar as its measurement

device.
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3.3 ABSOLUTE RCS ESTIMATION

The absolute radar cross-section of a target at frequency f may be estimated

by:
v ' 2 -1
PovGrxGrx A Fhtcerr

a(f) = Pp(f) (47!')3I\’.4Lq

(3.1)

where R is the one way path length the wave travels to the target, P4y is the
average transmitted power, G'ry is the transmitting antenna gain, G py is the
receiving antenna gain, A is the wavelength, Fp is the one way propagation loss
factor, {7 is the coherent processing time, Pp(f) is the received power from
target, and Lg is a factor accounting for system losses. Therefore, to directly
estimate the absolute RCS of a target at N frequencies, the above parameters
must be estimated at each frequency used. System parameters such as Py, Gy,
GRrx, tcrr, f and Lg are generally known or may be accurately estimated at
each frequency. The power returned from the target Pp(f) at each frequency may
be estimated from the appropriate Doppler spectra as discussed earlier. However,
the range (R) and propagation loss (Fp) may be much more difficult to estimate
depending on the propagation mode involved.

For a surface wave radar, the range to the target may easily be estimated
through time gating or other signal processing strategies. The propagation loss,
however, is a function of the sea state over the path as well as frequency and
thus becomes more difficult to accurately estimate; see Norton [6]. A sky wave
radar poses a problem when attempting to estimate the path length R. The first
difficulty results from path length being a function of the ionospheric structure

which is constantly changing with time. In addition, waves of different frequencies
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may travel differenct paths to illuminate the same target thus making R not only

a function of time but also of frequency [14].

To circumvent the difficulties of estimating Fp in a surface wave radar and R
in a skywave radar, a reference may be employed. Possible references include land
masses, ocean markers, or Bragg lines. Knowledge of the radar cross section of the
reference then allows estimation of the target RCS at each frequency. A method

of calibrating Bragg lines for use as an absolute reference is given in Trisna [15].

3.4 RELATIVE RCS ESTIMATION

Bragg lines may also be employed as a relative reference. Figure 9 shows two
spectra obtained at two frequencies f; and fa. Knowing the expected change in
the mean of the Bragg line amplitude with frequency (which is assumed to be zero
in this example) the relative RCS estimates of the target can be constructed as

shown in Eq. (3.2) and Eq. (3.3).
or(f1) = (20 — 30)dB = —104B (3.2)
or(f2) = (15— 30)dB = —20dB (3.3)

Therefore, the RCS of the target at f} is 1/10th the RCS of the reference, and the
RCS of the target at fy is 1/100th the RCS of the reference. Thus the relative
change of the target RCS has been estimated without absolute calibration of the
Bragg line. Therefore, the use of the relative RCS of the target as a possible feature

for classification purposes should be evaluated.

3.5 RELATIVE PHASE ESTIMATION

Previous RTI studies have shown that intrinsic target phase often proves to

be a powerful feature when used for classification [2], {8]. However, difficulties in
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27

. . . . N .
TR ST RS AR SES CRER(SARECANASARATARELRG (4 { S Or




R R Y,

-y e e

[

N e e e e e

-

TR RN NI 2K PO TR S AR NN WV WU NS Fa Y u ) R U RN VENLN AR L LSRR R WO N

accurately estimating the path length to the target as in the case of the sky wave

propagation may preclude the accurate estimation of intrinsic target phase. There-

fore an alternate method of utilizing target phase information has heen studied.
Consider the phases of two radar signals at frequency f; and f2, which are

returned from the same target as given by Eq. (3.4) and Eq. (3.5).

2m(Ry,)
n=y T (3.4)
27r(Rf ) ' .
Qf, = Ay 2T 4 0,2 (3.5)

where Rfl is the round trip path length of wave at frequency f, Ry, is the round
trip path length of wave at frequency fy, A\ = f;, Ay = f;, and 65, and 6y, are
the intrinsic target phases at f; and fo respectively.

By multiplving Eq. (3.4) and Eq. (3.5) by A; and A2 respectively and then
subtracting Eq. (3.4) from Eq. (3.5), we are left with:

M @fy —Af@fy = 2m(Ryy = Ry ) + Mgy g, — Mg 0 (3.6)

where (Ry, — Ry ) is the difference between round trip path lengths at fo and
f1 respectively. Through careful selecton of Af = fa — f; and using ionograms
to estimate the present structure of the ionosphere, it may be possible to accu-
rately estimate (Ryg, - Ry ). By multiplying this estimate by 27 radians, and then

subtracting this result from Eq. (3.6), we are left with Eq. (3.7).
Il = Ag, 0, — Ag, 0y, (3.7)

Further division by )‘fz gives Eq. (3.8), which for fo = f; (Af small) may be
approximated by Eq. (3.9).

W =46 — M 6 (3.8)
= Yh X, h -
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W6, -6 (3.9)

Therefore W is a feature dependent on the change of the characteristic phase of
the target associated with fs and fy.

Figure 10 demonstrates a physical interpretation of the W function for a
simple scattering case. Consider two targets, each with single distinct scattering
points at f; and f, as shown. Each target has an intrinsic phase at each frequency

related to the distance from some reference to the scattering point on the target

as given in Eq. (3.10), Eq. (3.11), Eq. (3.12) and Eq. (3.13).

51
- (wh)

911 — (3.10)
fl Afl
on (20}”)
g =\ ) (3.11)
I2 A
fa
T.
2r {2D52
0? _ ( fl) (3.12)
1 /\fl
T
2r (2D,2
o ( f2> (3.13)
f2 ’\fz

The resulting W function for each target is given by Eq. (3.14) and Eq. (3.15).

T, 2 71 T ]
Wil = , [217 (Df2 Dh) (3.14)
T, 2 T, T ] .
Wit = i [27r (sz Dh) (3.15)

Note the W function is a measure of the distance between the scattering for the

two frequencies, and not the absolute position of the scattering point at any one

frequency.
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Figure 10: Targets with two simple scattering points.
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A multi-frequency radar system illuminating a target with M total adjacent
frequencies could generate (M — 1) W function estimates. These estimates could
then be employed as additional features to help identify the target. In general, the
larger the Af, the more the paths taken by the two waves differ, and the harder
it is to accurately estimate (Rg, — Ry, ). However, large A f values would tend to
excite scattering points on the aircraft which are more separated in distance, pos-
sibly leading to W functions which contain more information about the individual
targets. Therefore, our ability to accurately estimate the change in path lengths

with frequency for a given ionospheric condition may determine our maximum Af.
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i CHAPTER IV "
.I!I
i _ RADAR SYSTEM SIMULATION AND EVALUATION .
M
STUDY X
<
4.1 INTRODUCTION ’
In order to study the performance of possible radar target classification sys- é
tems which utilize HF radars as a measurement device, a simulated system has \
been developed. Over the past several years the ElectroScience Laboratory has de- '
G
veloped a large multi-frequency data base consisting of aircraft, ship, and ground »- 
%
vehicle radar signitures. This data base has been used to investigate several RTI v
methods for the various classes of targets. A data base consisting of calibrated L .
monostatic radar returns of 5 aircraft was chosen for the experimental portion of :::
&
this study. Although classification of the ships and ground vehicles is of consid- .0::
Fi
erable interest, the large amount of previous work with the aircraft data base [2] ’ -
provides a strong foundation of previous work for comparing results. ::
)

The ElectroScience Laboratory compact radar range facility was used to create

- X XD -
i O

the data base. A basic block diagram of the measurement system and a picture

of the actual facility is given in Figures 11 and 12 respectively. A more detailed E
explanation of system may be found in [3]. In general, the measurement facility i
simulates the illumination of a target by a radar wave which is approximately plane _
in the region of the target (locally plane). This would be true of any HF radar :'-
systent. The complex backscattered fields from the target and other undesired :

.l
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scatters are then measured over a frequency band of 1-12 GHz. To obtain the high-
accuracy range-independent complex signiture of the target, a calibration sequence
described in detail in Kimball [17] was employed. Further detailes concerning data
scaling, windowing, and other signal processing details are given in Harris [26],
and Kimball [17]. Five metallic scale models of the Concorde, DC10, 707, 727, and
747 were used as targets. Silhouettes and dimensions of the real aircraft are given

in Figures 13 through 17. Specifications of the 5 aircraft data base are given in

Table 1.

4.2 RADAR SYSTEM SIMULATION

A flowchart of the Radar System Simulation and Evaluation (RSSE) program
is shown in Figure 18. The program begins with selection of N complex radar
signatures of the 5 targets at frequencies fj,fa,...,fy, where the frequencies are
chosen by the operator to represent those which may be encountered in a typical
HF radar system. In addition, one azimuth angle and one polarization is selected,
thus assuming these parameters have been accurately estimated. The target data
base is then accessed, the data are appropriately scaled [8], and two sets of data
denoted the test and catalog set are created. Each element of the two sets may be

represented by:

Ap(f)e? ) = Re(fi) + 5 Xk £i) (4.1)
where

Ry(fi) = Ai(f;) cos(8x(£:)), (4.2)

Xi(fi) = A(fi) sin(6i (1)) (4.3)

and
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External Dimensions:

tength oversll 202 £t 3.6 4in (61.66m)
Neight oversll 60 £t 0.0 in (12.19m)
wing span 83 2t 10.0 4n (35.56m)

Figure 13: Concorde silhouette (from Kamis [2]).

po

Baternal Dimensiens:

*| eoormenseme

Length overall 101 £t 7.2 in (5%.)%5a)
Neight everall $7 ¢t 7.0 4in (17.55m)
wing span 368 £t 6.0 fa (50.39m)

Figure 14: DC10 silhouette (from Kamis [2}).
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External Dimensions:

Length everall 152 €t 11.0 in (46.61m)
Weight overall 42 ft 5.0 in (12.93m)
¥Wing span 145 £t 9.0 in (44.42m)

Figure 15: 707 silhouette (from Kamis [2]).

Baternal Dimensiens:

tength everall 183 £t 3.0 4n (46.69m)
Itsght overall 3¢ . 0.0 in (10.36m)
Mang spen 100 £t 0.0 in (32.92m)

Figure 16: 727 silhouette (from Kamis [2]).

36 A

: 1 e -
S A L G G I L N T e Y

»



‘lg~}(.,\,ukn(ghlkn,~ %l\l\k\l%mchit f :.: J)'f,§-1;~31\! N »"f'( ’\fufﬂfﬁ

Gyt ok R IEA AR RAEN A K/ .8 ¢ 0 $.§ ol ol A cal Aaq vak_ ‘o cav el sl cat tar caly 4¥s 4l

N R ‘85080 $°a %0 %8 82,0

External Dimensions:

Length overall 231 £t 4.0 in (70.51m)
Seaght overall 63 £t 5.0 in (19.)3m)
¥ing span 195 ft 8.0 in (59.64m)

Figure 17: 747 silhouette (from Kamis [2]).
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- Table 1: Data base specifications (from Kamis (2]).

Low-Frequency Data Base
Frequency formatied data strings from 1 to 12 GHz
Availible polarizations:
Transmit Horizontal, Receive Horizontal (HH)
Transmit Vertical, Receive Vertical (VV)
Transmit Horizontal, Receive Vertical (VH)
Availible Azimuth angles @ Elevation = 0°:
0° to 180° by 10° and 15° increments
~ Common aircraft bandwidth:
1.6 - 60 MHz “Scaled”

Maximum number of usable frequencies: 209
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Ar(fi) = square root of the radar cross section of target at frequency

fi'; .'
« .

A corrupted feature vector representing an unknown target was constructed :E:.
"
= by first generating 2N total noise samples taken from an independent Gaussian ::
zero—mean random process with noise power Py given by : g
g .
Py = 1010g10(7)stm (4.4) o
gt
)
where o is the standard deviation of the process in meters [3]. The noise samples )
N0,
were then added to the N high accuracy complex radar signitures of a known ‘:_
4
target in the test set to create N corrupted complex data of the form: ".
: )
Ru(fi) = Rr(fi) + N(fi) (4.5) * 3
Xu(fi) = Xo(fi)) + N'(fi) (4.6) o
\

where Rp(f;) is defined in Eq. (4.2) for target T in the test set, Xp(f,) is defined

in Eq. (4.3) for target T in the test set, and N(f;), N'(f;) are samples from the

:»;-
independent zero-mean gaussian noise process. A '::
¢
The resulting N complex corrupted data which may be represented by : .‘
: ~ 3
- s < 0. (f: . - ~
Ru(fi) + i Xu(fi) = Af)™ ), =1, N (4.7) 3

constitute the unknown target feature vector. This corrupted feature vector is
then tested against the feature vectors of the targets in the catalog set by means

of a classifier function as shown. A Euclidian distance metric algorithm commonly

-

refferred to as a Nearest Neighbor (NN) algorithm was employed as the classi-

fier function. The NN algorithm computes a distance (d, ;) as a measure of the

-

distance between the unknown target u and the catalog target k, as shown in

Eq. (4.8).

T e T N ANESA SN
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Figure 18: RSSE program flowchart (from Kamis [2]).
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N
dyp = | S (Frlfi) = Ful£)) (4.8)
=1

where Fi(f;) is the feature of target k at frequency f;; extracted from the catalog
- set, and Fy(f;) is the feature of unknown target u at frequency f; extracted from
the corrupted feature vector.
After testing against the appropriate features of all 5 possible catalog targets
(k =1 to 5) the unknown target is classified as the catalog target which produced
the smallest distance measure. Whether the classification attempt was succesful
or not is known since the identity of the unknown target is known a-priori. This
simulation process is repeated 100 times for each test target, with independent
noise being added each time to create the simulated feature vector. Results of a
run for a given noise power are plotted as a confusion matrix as shown in Figure 19.
The average misclassification percentage has a margin of error since it is the
result of a finite, and not an infinite, number of independent experimments. Details
of the error margin may be found in Degroot {10]. In general, the error margin is

on the order of 2 to 3 percent for 5 targets and 100 experiments [2].

4.3 CHANNEL SELECTION AND SIMULATION

In general, the ability to accurately estimate target features such as abso-
lute RCS and intrinsic phase may be described by defining channels with various
characteristics which affect the complex backscattered coefficients of the targets.
This section describes four channels with different characteristics which allow dif-
ferent target features to be estimated. By appropriately processing the complex
backscattered components from the test set for each channel model, and alter-

ing the complex backscatter components of the catalog set if appropriate, the

41
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Nearest Neighbor Algorithm - Vector "NON-COHERENT" distance metric

Classification Table for Noise pover = 10.00 pasH
TTE\CTH 1 2 3 4 S § MIS-CLASS

1 04 l s 10 0 16.00
e 4 86 3 7 0 14.00
3 0 0 100 0 0 0.00
4 13 9 s§ 73 ° 27.00
S 0 0 0 0 100 0.00

Average mis-classification percentage : 11.40 8

Mis-classification percentage is based on the test targets name.

Figure 19: Confusion matrix (from Kamis (2]).
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resulling classification performance given the constraints of each channel may be

synthesized.

4.3.1 Coherent Gaussian Channel Model Simulation

A channel which adds coherent independent zero mean Gaussian noise to the
complex backscatter coeflicients of target T is shown in Figure 20. Note that
both the amplitude and phase of the high-accuracy backscatter terms have been
corrupled. The resulting estimates Ry(f;) and Xy(f;) represent the corrupted real
imaginary parts of the complex backscatter coefficients of an unknown target to
be classified.

The implementation of the Channel 1 model into the RSSE program has
previously been described in Section 4.2. An algorithm denoted the Coherent

Nearest Neighbor Algorithm given by:

[

N
dur = | S(Re(Fi) = Rul fi))? + (XpSi) — Xul f2))? (4.9)
i=1

where Ri(fi), Xi(fi) are the complex backscatter coeflicient of catalog target &,
and I}u(f,-), Xu(f;) are the simulated real and imaginary parts of complex backscat-
ter coefficient of unknown target u, is then used to classify the unknown target U7
as being the catalog target K'* such that d, ¢* is minimized. It is important to
note that intrinsic target phase, although not directly estimated at the output of

Channel 1, is utilized in the estimation process.
4.3.2 Non-Coherent Gaussian Channel Model Simulation
A channel which corrupts the amplitudes of the complex backscatter coefhi-

cients through coherent addition of independent zero-mean Gaussian noise, while

removing all intrinsic phase information is shown in Figure 21. This channe] models
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a radar system where accurate estimation of intrinsic target phase is not feasible.

As aresult, only estimates of backscatter amplitudes are available {or classification.
The implementation of the Channel 2 model into the RSSE program has
previously been described in Section 4.2. An algorithm denoted the Non-Coherent

Nearest Neighbor Algorithm given by:

1
N 2

dyr = | S (Ap(fi) — Aulfi))? (4.10)

=1

where Ai(f;) is the high accuracy amplitude of complex backscatter coefficient of
catalog target k, and R,(f;) is the simulated amplitude of complex backscatter
coefficient of unknown target u, is then used to classify the unknown target u as

being the catalog target k* such that d, ;* is minimized.

4.3.3 Multiplicitive Component Channel Model Simulation

A channel which multiplies the amplitudes of an unknown target’s backscatter
coefficients by an unknown constant M in addition to adding noise and removing
phase information is shown in Figure 22. This channel models a radar system
where accurate estimation of absolute RCS is not practical due to the lack of a
calibrated reference, but estimation of relative RCS as described in Section 3.4 is
feasible.

One possible method of using /iﬂ{(f,') data out of Channel 3 involves the
removal of the unknown factor M. To achieve this, the average power of the

corrupt vector out of Channel 3 is calculated by:

sM _ L h a2
PM = =% (&d(f1) (4.11)
1=1
N
PM = M5 S (Rr(fi) + ') + (Xr(fi) + NUfi) P (4.12)

i=1
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Figure 20: Coherent AWGN channel model.
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PM — p2p (4.13) A

where P is the average power of the noise vector if A = 1. A new corrupt vector M

with values given by:

<\ !
iR ey A (fi) )
Al = (4.14) :
3

‘R oy _ VRTUD) + NUD? + (X(f) + N'(f:))? 2
Ay(fi) = = (4.15) ¢
VF |
. “l

may then be constructed. This resulting vector now has values independent of Af "
e
while maintaining the ratio’s of amplitude estimates at different frequencies, i.e.: .:
AM (¢ AR+ M
_,M(f_z) = -;‘?(f‘—) for1<i< N, 1<j<N. (4.16) 0

Ay (f]) Au (f]) '
-~ .

The A{,?(f,) features may now be used for target classification with a properly Yy
chosen catalog set. :::
"

The simulation of utilizing features passed through a channel with an unknown ‘
multiplicitive component first required normalization of the catalog set. The power :
(or average RCS) of catalog target k is given by Eq. (4.17). 4
A :
P = 2 (Ak(fi) (4.17) 5

=1 _\'
Dividing each data of catalog target k by the square root of P, gives a new set of
data, where the magnitude of each point in the vector is given by Eq. (4.18). |
Ar(f) , o

k (.ft) \/P_k ’ ( ) ‘ 

-

The new data Af(f,-) represent the relative radar cross section features of catalog b
target k which will be used in the classification routine. Note that the ratio of radar ;
cross section of any two frequencies f; and f; for catalog target k is preserved as 4
shown in Eq. (4.19). ke
»
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Figure 22: Multiplicitive AWGN channel model.
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(Ax(£0) _ (AF )Y
(A2 (Af(£))?

The normalization described in Eq. (4.17) and Eq. (4.18) is carried out on all

1<i<N,1<j<N (1.19)

catalog targets (k = 1 to 5). As a result, each catalog target has an average power

(or average RCS) given by:

1 N
ﬁz:l A (fi))? (4.20)

N
= N g ( ) (4.21)
FN;:ZJ Ap(fi))* (4.22)
P,f:éﬁ.:l (4.23)

Therefore, the overall average size of each target in the catalog has been removed.

The normalization is graphically depicted in Figure 23. The complex backscat-
tered amplitudes at frequencies f; and fy for two catalog targets are depicted by
veclors V} and Va. Vector ¥y represents a relatively large target with an average
RCS on the order of 1000 sm, and V; represents a smaller target with an average
RCS on the order of 400 sm. Note the distance between the two points in space
representing the targets is on the order of 10 to 15 meters. After normalization,
the two targets are represented by vectors V| and V5. Note the distance between

the points in space representing the two targets has significantly decreased.

The addition of coherent i.i.d. noise to the complex backscattered components
of a test target to form a corrupt test vector was carried out as described earlier.
After the noise was added the power of the test vector was calculated by:

z 1

Poy. RT(f,-.)+N<f,:)>2+(A'T<f,-)+N’<f,-))'“’ (4.24)

||[V]z
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Figure 23: Normalization of data vector. N
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’ The amplitudes of the simulated backscatter components were then normalized W
'

. ’
by. w3
\ Voo - o

- [(Rr(fi) + N(fi))? + (Xp(fi) + N'(£:))?] . .
. AJ(fi) = = , t=1,...,N(4.25) "
VP 0

producing the normalized amplitudes of the backscatter estimates of the unknown v
target. This process would remove any unknown multiplicitive component from ok
‘?"
the test vector as shown earlier. It is critical that the noise be added before the - l
normalization process is completed in order to directly compare the relative RCS ' ¢
to the absolute RCS as possible classification features. If normalization is done l'
before noise is added, the signal to noise ratio will be much lower resulting in "
significantly poorer classification performance. The unknown target may then be 2_\
tested against each of the catalog targets by use of a Nearest Neighbor Algorithm s

]

of the form: X
\J

1

(AR _ R 2|? 3
dug = | 2 (AF - A(£) (4.26) 2
=1 .
- i
where Af(fi) and Af(f,) are given in Eq. (4.18) and Eq. (4.25) respectively, and "
the identity of the unknown target is chosen as the catalog target A* for which d, ,
is minimized. »
& {
o
4.3.4 Additive Component Channel Model Simulation i

4
Since the case of using a channel model with an unknown multiplicitive factor ;.;

M is of interest, it is natural to extend the problem to the case of an unknown o

3 . . .\

additive component (' as shown in Figure 24. The addition of the unknown com- -

S

ponent C'2 under the radical sign as shown represents the estimation of RCS of a :v
b \)
target at 2 or mere frequencies, where only the difference in RCS is known. For i

.

example, the difference in RCS of a target at f; and f; may be known to be 500 sm s
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but whether the RCS at f; and f; is 10 sm and 510 sm respectively, or 1000 sm
and 1500 sm is not known. Although this probiem may or may not arise, it is of
g considerable interest to the RTI designer to determine the achievable classification 3
- performance given a channel with this constraint.

o e a2
To remove the unknown additive component ('<, the average power of the

“ corrupt vector at the output of Channel / is calculated by:
PC = L S(AC(1)? (4.27)
N
PC =4+ P (4.28)
:‘ where P is the average power if C2 = 0. The vector is then normalized by: }
; A2(£3) = VAS (£ — Porm + PC] (4.29)

AD(f) = [(Rr(£)+ N(f))* + (Xz(f;) + N'(£))

£ € [Paorm + (C? = B)]] (4.30)

AP(£) = [(Rr(£) + N2+ (X2(£i) + N'(fi))> + [P = Paorm]]’ (4.31)

giving a new vector independent of (', while maintaining the difference in power

(RCS) between data al any two frequencies.

Features constructed from a channe] with an unknown constant additive com-

ponent are referred to as relative difference RCS (RDRCS) features. The features

<

g were implemented into the RSSE program by reconstructing each target in the

catalog set so its new average power pk‘_‘“/ is the same for all targets while the dif-

N ference between RCS at a given frequency and the average RCS is maintained. The
. same reconstruction of the corrupted test vector removes any unknown additive

component from the estimates. As a result, each target in the catalog set is given
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Figure 24: Additive AWGN channel model.
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the same average RCS, with the difference between the RCS at each frequency and
the average RCS being maintained.

The normalization of the catalog set in the RSSE program was accomplished
as described above. Since the amplitude of the complex I :%scatter coeflicients
in the catalog set is actually the square root of the radar cross section at each

frequency, the amplitudes were reconstructed using:

_ 1
Ag(fi)z [(Ak(fi))2+(Pnorm_Pk)]2 : . (4.32)
where
_ 1 XN 0
Py = 5 2 (Al£0))" (4.33)
i=1

An example of the norinalization effect on two catalog targets is given in
Figure 25. Consider target 1 in the catalog set with RCS values 500sm, 400sm, and
300sm, and target 2 with RCS values of 600sm, 1000sm, and 1400sm at frequencies
f1, f2 and f3 as shown. The average RCS over the three frequencies is 400sm and
1000sm for targets 1 and 2 respectively. After the normalization, the average RC'S
of both targets is 1600sm (Pporm = 1600sm) as shown. As a result, absolute
target size is lost; however, the difference between the RCS at any frequency and
the average RCS is maintained.

Coherent noise was added as always to the complex backscatter coefficients of
target T of the test set to create the noisy feature vector. The average power of

the noisy feature vector was then calculated as:

_ 1 N ”
pPY = N S (Aulfi))" (4.34)
=1

The amplitudes of the noisy feature vector were then reconstructed as:

(S L]

AD(f) = [(Aul£))* + (Paorm — P")] (4.35)
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These data represent the estimates of the amplitudes of the complex coefficients '.::
passed through channel 4 after the additive unknown component has been removed. :::f
. . . J
As a result, the Nearest Neighbor Algorithm given by: -
i} t
N 2
- D iD 2 >
du,k‘: Z(Ak (fi)—Au (.fl)) (4.36) o
=1
where AkD(f,-) and if)(f,) are given by Eq. (4.32) and Eq. (4.35) respectively, was f&
used to classify the unknown target u as the catalog target &* for the &* such that n
4
d k* is minimized. bt
)
It 1s important to note that although the power of the catalog vectors and A
N
corrupted vector is altered, the signal-to-noise ratio of the initial corrupted vector is ?
- . . i
not changed, and thus classification performance will not be function of the power Ay
14
level chosen for normalization. Simulations were repeated using normalization Yy
"
power levels of 4000 sm, 6000 sm, and 8000 sm to insure this result.
O

4.4 ASSESSMENT OF MISCLASSIFICATION CURVES

-y

A typical set of misclassification curves is shown in Figure 26. Performance of

P LI A

a given curve with respect to another may be related by the relative noise power

immunity. The noise power immunity of a curve is determined by the difference .
n
. ~
between the noise power of the curve and the reference curve evaluated at a con- N
AY
stant mnisclassification level (generally between 5 and 40 percent). The noise power e
i
immunity is an approximate measure of the additional noise power which must cor- !
\.
rupt the according data to produce a curve equivalent to the reference. A positive ’
noise power immunity indicates better classification performance with respect to N
the reference, while negative noise power immunity indicates the opposite. '\
\'.
3
~
o
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CHAPTER V

RSSE RESULTS FOR AWGN CHANNELS

5.1 Frequency Band Study

The frequency band over which a target at a given range may be illuminated
is limited. As a result, only estimated features from the limited band are available
for classification. Thus a study has been conducted to find the effect of frequency
band size on classification performance for the four channels described in Sections
4.3.1 through 4.3.4.

Figure 26 shows the change in performance as the frequency band of channel 1
is decreased. Note the overall performance is not significantly effected. Figure 27
demonstrates the greater loss of performance with decreasing frequency band when
channel 2 used. A significant loss of noise power immunity of approximatel 8 dB-sm
is encountered when the frequency band decreased from 4 MHz to 2 MHz.

Similarly, Figure 28 demonstrates the even greater decrease in classification

performance encountered by decreasing the frequency band when channel 3 intro-

duces an unknown multiplicitive component. Losses on the order of 5 and 12 dB-sm

X Y VW
}l.‘ -

noise power for a given misclassification percentage appear as the frequency band

NS

is decreased from 8 MHz to 4 MHz, and then 4 MHz to 2 MHz. Figure 29, which

)
Wt h

was generated utilizing the unknown additive component channel, expresses the

most significant decrease in performance as the band is decreased from & MHz to

4 MHz.
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Figures 26 through 29 demonstrate some qualities unique to each of the four
channels. Channel 1 demonstrated a very small change in performance compared
with the three other channels as the frequency band was significantly decreased.
Both channel 2 and channel 3 showed a much larger degredation in performance
when the band was reduced to 2 MHz as compared to the reduction to 4 MHz.
This implies a frequency band of not less than 4 MHz would be highly desirable
given a channel which does not allow the estimation of phase information. This
also implies that a doubling of the frequency band from 4 MHz to 8 MHz does not
provide the same degree of improvement in classification performance. Therefore
the cost of having the ability to obtain features over an 8 MIiz frequency band, such
as a second radar site, may not be warranted. Conversely, channel 4 demonstrated
significant performance degredation in both cases of band reduction. Therefore,
given a channel with an unknown additive component, a significant increase in

performance may be obtained by extending the frequency band beyond 4 MHz.
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Parameter Under Observation: Frequency Band Size

Channel Model: Coherent AWGN Channel

Azimuth angle: 45

Start Frequency: 8.0 MHz .
Stop Frequency: Varies

Nuniber of Frequencies: 10

W EEREERR T [ASE L GGG T hﬁ,\ﬁrj

00 50 0o 50 20 50 29,
S | 1 1 A 1 P 1 —a 1 1 - | 1 5
(=1
8
(=3
£
o
2
o
3

PERCENT MISCLASSFICATION

T ID].OT‘.’\!ﬂyI g ‘ﬂl T '410_' T 'afl‘r 'db‘ T |7ZOI T lsdol Ll lg{o' T—rr

LA

0
; _{M_AL_L e
(.—

—f ¥ —F——2

NOSE POWER (DB-SM)

Z
%
=
00

80 MHzto 10.0 MHz Band
~ - - - 8.0 MHz to 12.0 MHz Band
— - — 8.0 MHz to 16.0 MHz Band

Figure 26: Coherent channel band size study.
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Parameter Under Observation: Irequency Band Size
Channel Model: Non-Coherent AWGN Chanuel
Azimuth angle: 45

Start Frequency: 8.0 MHz

Stop Frequency: Varies

Number of Frequencies: 10
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Figure 27: Non-Coherent channel band size study.
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PERCENT MISCLASSFICATION

Parameter Under Observation: Frequency Band Size

Channel Model: Multiplicitive Component AWGN Channel
Azimuth angle: 45

Start Frequency: 8.0 MHz -
Stop Frequency: Varies

Number of Frequencies: 10
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PERCENT MISCLASSKFICATION

Parameter Under Observation: Frequency Band Size
Channel Model: Additive Component AWGN Channel
Azimuth angle: 45

Start Frequency: 8.0 Mllz

Stop Frequency: Varies

Number of Frequencies: 10
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Figure 29: Additive component channel band size study.
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5.2 Number of Features Study

A study was conducted to determine the relationship between the number of
features used and the classification performance for the four channels. Previous
research [2] concluded that the minimum frequency sampling interval which will
satisfy Shannon’s sampling criteria is given by:

c

3.5L

Af< (5.1)

where c is the speed of light and L is the length of the target. Therefore given an
average target length of 50 meters, one finds approximately 2, 3, and 5 frequency
samples are required to meet the above criteria for band widths of 2 MHz, 4 MHz,
and 8 MHz respectively. These values were used as minimum guidelines to be met
for each corresponding frequency band. Since Kamis [2] examined the effect of the
number of features at large frequency bands (Fponqg > 8 MHz) for channels 1 and
2, these bands for these channels were not included in the study.

Figure 30 shows a significant increase in noise immunity of approximately
5 dB-sm as the number of features through channel 1 are increased from 3 to 5
to 10 over the 2 MHz band. The increase in noise immunity of approximentally 5
dB-sm demonstrates that classification performance can be significantly improved.
Figure 31 exhibits the smaller noise immunity of approximately 3dB-sm associated
with channel 2 as the number of features is increased from 3 to 10. Figure 32
demontrates an almost constant increase of noise immunity of 3 dB-sm to 5 dB-sm
as the nnmber of features is increased from 3 to 5 to 10 to 20 in the channel with an
unknown multipicitive component (channel 3). Figure 33 demonstrates a similar
increase in performance for the unknown additive component channel.

Figures 30 through 33 illustrate that classification performance may be im-

proved by increasing the number of features when limited to a 2 MHz frequency
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band, irregardless of the channel. Channel 2 demonstrated the smallest increase in
performance of the three, however, the increase is much greater than that ohserved
by Kamis (2] when increasing the number of features over larger frequency bands
of 8 MHz and 22 MHz.

Figures 34 and 35 show the relationship between the number of features and
classification performance over 4 MHz and 8 MHz frequency bands for channel 3.
Both figures indicate an additional noise immunity of approximated 3 to 5 dB as
the number of features is increased from 5 to 10. A smaller increase in perfor-
mance is obtained by increasing the number of features from 10 to 20 and 10 to
15 as shown in Figures 34 and 35 respectively. Therefore, as frequency band is
increased, channel 3 demontrates a decrease in the amount of improvement in clas-
sification performance obtained by using an increased amount of features. Note
that channel 2 displays this same property.Figure 36 demonstrates that the addi-
tive component channel exhibits the same properties as channel 2 and channel 3
concerning frequency band, number of samples, and classification performance.

Therfore, Figures 30 through 36 indicate that if one is limited to a small
frequency band, it may be worth the cost of the additional processing time to
obtain estimates at 10 or 20 frequencies regardless of the channel. However, if a
larger frequency band is available, the additional processing cost may outweigh

the slight increase in classification performance obtained through the additional

features.
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PERCENT MISCLASSIFICATION

Parameter Under Observation: Number of Features
Channel Model: Coherent AWGN Channel

Azimuth angle: 0

Start Frequency: 8.0 MHz

Stop Frequency: 10.0 Mllz .
Number of Frequencies: Varies
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Figure 30: Cioherent channel number of features study (8.0-10.0 MHz).
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PERCENT MISCLASSFICATION

Parameter Under Observation: Number of features
Channel Model: Non-Coherent AWGN Channel
Azimuth angle: 0

Start Frequency: 8.0 MHz
Stop Frequency: 10.0 MHz
Number of Frequencies: Varies
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Figure 31: Non-Coherent channel number of features study (8.0-10.0 MHz).
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Azimuth angle: 0

Start Frequency: 8.0 MHz
Stop Frequency: 10.0 MHz
Number of Frequencies: Varies

Parameter Under Observation: Number of Features
Channel Model: Additive Component AWGN Channel

400

200

300
S I U W U W O T

00 50 00 50 %0 %0,
4 ] ] 1 1 A 1 1 3
8 e
j -
4 f
°._ Q
2] [=
] r
o 7 [ o
84] £
] ’ g
o =
=N s
B -
1 B
OJ b-c
8 3] g
2
<< b -
5 ] -
‘-ﬂ o_] | o
<= R
3 5
= -
[ Fo
z <
& i
L
= [
<
[=
3
F

NOISE POWER (DB-SM)

3 Features
~ ~ - - 5 Features
~— - — 10 Features

Figure 33: Additive component channel number of features study (8.0-10.0 MHz).
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Parameter Under Observation: Number of Features v
Channel Model: Multiplicitive Component AWGN Channel
Azimuth angle: 0

Start Frequency: 8.0 MHz

Stop Frequency: 12.0 MHz - :‘
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Parameter Under Ohservation: Number of Features
- Channel Model: Multiplicitive Component AWGN Channel "
Azimuth angle: 0
Start Frequency: 8.0 MHz ’,'
Stop Frequency: 16.0 MHz - o/
Number of Frequencies: Varies ;;y
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Figure 35: Multiplicitive component channel number of features study

(8.0-16.0 MHz).
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Parameter Under Observation: Numbher of Features
Channel Model: Additive Component AWGN Channel
Azimuth angle: 0

Start Frequency: 8.0 MHz

Stop Frequency: 16.0 MHz

Number of Frequencies: Varies
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Figure 36: Additive component channel number of features study (8.0-16 Mlliz).
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5.3 Comparison of AWGN Channels Performance

A direct comparison ol the four channels has been made in terms of clas-
sification »erformance. Figure 37 demonstrates the dependence of classification
performance on the channel given a 2 MHz frequency band. A significant pertor-
mance degredation of at least 15 dBsm is experienced for channel 2 with respect to
channel 1. The classification performance of channels 3 and 4 is further degraded
as a result of target information lost in the normalization processes used to remove
the unknown (multiplicitive or additive) components.

Figure 38 shows the resulting performance of the same channels over a wider
4 MHz frequency band. The performance of channels 2, 3, and 4 improves sig-
nificantly with respect to the perforinance of channel 1. At lower noise powers,
channel 3 is found to outperform channel 4 by a surprisingly wide margin of ap-
proximately 2 dBsm.Figure 39 compares the performance of the 4 channels over an
8 MHz bandwidth. The additive component channel now outperforms the multi-
plicitive channel. Note that the performance of channeis 2, 3, and 4 all fall within
5 dBsm of each other.

Figures 37, 38, and 39 together indicate that channels with unknown mul-
tiplicitive or additive components which must he removed will always degrade
performance. This is understandable, since information concerning target size is
lost in the normalization process used to remove the unknown (multiplicitive or ad-
ditive) component.More importantly, these figures indicate that the performance
of a channel with an unknown additive component (channel 4) degrades at a faster
rate with a narrowing frequency band than a channel with an unknown multi-
plicitive component (channel 3). Figures 37 and 38 clearly indicate that knowing

the difference in absolute RCS between frequencies (channel 4) will not provide
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any better perforinance over knowing only the relative change in RCS (channel 3).
Finally, the three figures indicate that without phase information classification
performance decreases dramatically with a decrease in frequency band.

Figures 40 and 41 show the classification performance of the four channels
using 5 and 15 features respectively in the 8 MHz frequency band. Again, chan-
nel 1, which utilizes phase information, performs significantly better. Note that
the relative perforinance of each channel with respect to the other three remains
almost constant in both figures. Therefore all three channels tend to suffer the
same loss of performance with the lowering of the number of frequencies in this
large 8 MHz frequency band.

Figures 42 displays the resulting poor performance of channels 3 and 4 when
the number of features is limited to three and the frequency band (2 MHz) is

limited. The 9 dB-sm increase in noise power immunity of channel 2 with respect

to channel 3 at the 20% misclassification level is one of the largest changes in

performance found between the two channels.

Figure 43 demonstrates the relatively large improvement in classification per-
formance of channel 3 with respect to channel 2, especially at noise power levels of
less than 5 dB-sm. This increase in relative classification performance demostrates
that the performance of channel 3 degrades faster than the performance of chan-
nel 2 when the number of features is decreased. This same property was noted in
the number of features study. Finally, Figure 44 demonstrates an even smaller de-
crease in classification performance for channel 3, further backing the performance
loss — number of frequency relationship for channel 3 at small bandwidths.

Figures 45 and 46 compare the channels over a different band from 20 MHz to
24 MHz and 20 MHz to 28 MHz. The channels demonstrate the same characteris-

tics over these bands as over the S MHz to 12 MHz and 8 MHz to 16 MHz bands.

2

O L N T T T AT N e 0y N e T T T L U T A U0, U R



LRI AT ROT TR 107 \ AT TR U AW U -pvv:-"'.‘.'u,v.-|-'.-.».u,.,.,.'u.- ‘ava AV, D 3} ) va 8% 874", TWR 3 a4 ry Y YXR Y]

veCl

-

Therefore the channel characteristics which have been noted do not appear to be

dependent on the exact band in the HF spectrum used, but only depend on the
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size of the band.
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Parameter Under Observation: Channel

Channel Model: Varies

Azimuth angle: 45

Start Frequency: 8.0 MHz

Stop Frequency: 10.0 MHz -
Number of Frequencies: 10
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Figure 37: Channel study over 2 MHz band.
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Parameter Under Observation: Channel
Channel Model: Varies

Azimuth angle: 45

Start Frequency: 8.0 Mz

Stop Frequency: 12.0 MHz

Number of Frequencies: 10
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Figure 38: Channel study over 4 MHz band.
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PERCENT MISCLASSFICATION

Parameter Under Observation: (‘hannel
Channel Model: Varies

Azimuth angle: 45

Start Frequency: 8.0 MHz

Stop Frequency: 16.0 MHz

Number of Frequencies: 10
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Figure 39: Channel study over 8 MHz band.
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Parameter Under Observation: Channel \
Channel Model: Varies
Azimuth angle: 0

Start Frequency: 8.0 MHz
Stop Frequency: 16.0 M1z
Number of Frequencies: 5
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Figure 40: Channel study for 5 frequency, 8 MHz band.
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Parameter Under Observation: Channel
Channel Model: Varies

Azimuth angle: 0

Start Frequency: 8.0 Mz

Stop Frequency: 16.0 MHz

Number of Frequencies: 15
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Figure 41: Channel study for 15 frequency, 8 MHz band.
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PERCENT MISCLASSKICATION

Parameter Under Observation: Channel
Channel Model: Varies

Azimuth angle: 0

Start Frequency: 8.0 MHz

Stop Frequency: 10.0 MHz

Number of Frequencies: 3
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Figure 42: Channel study for 3 frequency, 2 MHz band.
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PERCENT MISCLASSFICATION

Parameter Under Observation: Channel :

Channel Model: Key

Azimuth angle: 0

Start Frequency: 8.0 MHz -
Stop Frequency: 10.0 MHz

Number of Frequencies: 5
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Figure 43: Channel study for 5 frequency, 2 MHz band.
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Parameter Under Observation: Channel

Channel Model: Key

Azimuth angle: 0

Start Frequency: 8.0 MHz -
Stop Frequency: 10.0 MHz

Number of Frequencies: 10
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Figure 44: Channel study for 10 frequency, 2 MHz band.
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Parameter Under Observation: Channel
Channel Model: Key

Azimuth angle: 45

Start Frequency: 20.0 MHz

Stop Frequency: 24.0 M1iz

Number of Frequencies: 10
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PERCENT MISUCLASSKICATION

Parameter Under Observation: Channel

Channel Model: Key

Azimuth angle: 45

Start Frequency: 20.0 Mllz -
Stop Frequency: 28.0 MHz

Number of Frequencies: 10

§00 A 512 )y g'o —t, 610 'l 20‘.0 L ﬁ? 1 w‘oo'

4 -

-4 -
2] [
& =
5] [
27 P

4 B

] o
] R

] S
= o [ ©
3 | X’/ :8
=] pi =
2 . B

4 / L
Iz a i
s j s =

. ;f o
=7 K ==t

: s -

7 L
-] , .
=7 s Eﬁ
=" N B [ o
2 e =
e * L
_.-X ' *
g';{ ‘/V‘!\/./l‘ \1/"" T | ™ -1 -1 T - g
"~ 5C H.O II.O 200 %0 30.0

NOISE POWER (DB-SM)
C'oherent Channel

- - — - Noun-Coherent (‘hannel
— - — Multiplicitive Component Channel

Figure 46: (‘hannel study for upper 8 Mliz band.
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CHAPTER VI .

RELATIVE PHASE CHANNEL MODEL

. 6.1 Feature Implementation

The development of the W feature in Section 3.5 was intended to provide

information related to the intrinsic phase of the target at times when the accurate i
estimation of absolute path length is difficult to achieve. It has previously been
*; shown that given certain channel conditions one may create (N —1) target features i
X
“, from the difference of the intrinsic phases at adjacent frequencies. These (N — 1)
. features, coupled with N estimates of the RCS of the target at each frequency,
provide a total (2N — 1) features of the target which may be used for classification ’
;
‘ purposes. The (N — 1) W features contain additional information about the target E
E provided they are not too severely aflected by noise. If used correctly in a clas- e
. sification algorithm along with the amplitude features, these IV features should :
:f improve classification performance over that of using the amplitude features only.
; A variation of the nearest-neighbor algorithm was developed to incorporate
i the W features in the classification process. Previous experience has shown the
ii nearest-neighbor algorithms can provide powerful classification performance results !
:, [2], and therefore have been used as the starting point. In addition, the use of a

distance metric makes intuitive sense in a problem of this nature. Consider two

catalog targets (k = 1, 2) whose backscatter amplitudes (VR('S) measured at fy,

{2, and f3 are plotied in 3 dimensional space as in Figure 47. These two targets :
 ‘
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have two corresponding intrinsic W values each given by Eq. (6.1) and Eq. (6.2) ¢
which may be plotted in 2-dimensional space as shown in Figure 48. '

. f2 - .

Wi(f1) = Olfa) - Eok(fl)» k=1,2 (6.1) E

- 1
Welf2) = B4l f3) — 7204l fo), k=12 (6:2) ’

where 0,.(f,) = intrinsic phase of target I at frequency f;.
Next consider estimating the corrupted amplitude and corrupted 1’ values of
an unknown target « at the corresponding frequencies fy, fa, and f3 and plotting

the estimates in Figure 47 and Figure 48 as shown. Use of a Euclidian distance

metric provides four distinct measures as given in Eq. (6.3), Eq. (6.4), Eq. (6.5), ¢
and Eq. (6.6). ;
{
P ) ]
dj1= ! (A1(fi) — Aulf))" (6.3) v
1=1 ) \
3 . % ;
i

iy = {Z(a‘h(ﬁ:) - Au(fi))” (6.4) 3
=1 | .

- o1

2 3
iy = | (W1(fi) - Wal£i))? (6.5) .
Li=1 ] It
v
1 3

W [ 2 .,. 2
dy2 = {Y_(Walfi) - Wulfi))* (6.6) :
[i=1 ] )
y
A final distance between the unknown target and the two catalog targets may t
then be constructed as: )
3
dfjw = d':,l + deL“:l (meters) (6.7) ‘
)
'.
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d“HW dAz + de (meters) (6.8)

where the p term provides a weighting of the ¥ metric, while the Q term provides
a unit conversion from an angle measure to a length measure.

The Q term, labeled the catalog normalization factor, is a measure of the
separation of the targets in the catalog set. In Figure 47 , the average separation
of the two catalog targets in terms of amplitude features may be calculated by
Eq. (6.9).

!

3
D¢ = [E (A2(fi) - Al(fi))g] (meters) (6.9)

=1
Likewise, the average separation of the catalog targets in terms of 1V features may

be calculated by Eq. (6.10).

2
Z(VV (f) = Wi fi) } (degrees) (6.10)

The ratio of these two terms, as given by Eq. (6.11), provides the catalog
normalization factor.
A

Qc = Bg—’ (6.11)

The catalog normalization factor may be viewed in the following manner. Fig-
ures 47 and 48 show the same two catalog targets in terms of two different met-
rics separated by two different average distances as calculated in Eq. (6.9) and
Eq. (6.10). By multiplying the W features of the catalog set by Q (rescaling the
phase feature space), one can find the new average separation of the catalog targets

in terms of the W features as:
1

lz (QWa(f,) - Qmu&)f} (6.12)

3
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1

2 2
DY = |@ T (Wafi) - Wi(£:))? (6.13)
i=1
D¥ =q.-DY T (6.14)
DY = p§ (6.15)

Therefore multiplying the catalog IV features by Q has the effect of convert-
ing the 1 feature space to an amplitude feature space by using average target
separation as the conversion factor. Likewise, the rescaling of d:f"k by Q as shown
in Eq. (6.7) and Eq. (6.8) has the same resulting effect.

The value of p, the WV feature weight, reflects the emphasis placed on the 11
features in the classification process. For p=0, the 11" features are ignored, and the
classification decision is solely determined by the amplitude distance. For p >1,
the normalized IV features are more heavily weighted than the amplitude features.

In order to determine a proper value of p, one must consider the radar system
from which the estimates of amplitude and phase are made. In general, the de-
gree of corruption of the W features, with respect to the amplitude features, will

determine the emphasis or de-emphasis of the normalized W -distance measure.

6.2 Channel Simulation

The relative phase channel model was simulated as follows. The IV values
of the catalog set were first created using the complex backscattered coeflicients
previously loaded in the catalog set. The normalization factor of the catalog set
was then created by:

1
Zi- @é?b_tl_[gfvjl (4afi) - 4s(£i))*]*

n

1
S To o [T (Walf) = W(£))?]2

Qcalalog = (6.16)
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where Aq(f;), Ap(fi) are the backscatter amplitudes of catalog targets a and b,
and Wy( f;), Wp(f;) are the 11" values of catalog targets a and b. A corrupt test set
vector was formed through the addition of coherent zero mean Gausstan noise to
a high accuracy test set vector as described earlier. The (N — 1) noisy W features
were then created from these coherent backscatter amplitudes by:

A:’T(fi+l)) JA (‘\:'T(fi)
Rr(fiy1))  His Rr(f;)

Wu(f;) = tan™! ( ) i=1,N - 1(6.17)

where

Xr(fi) = Xr(f) + N', and
Ry(fi) = Ry(fi)+ N",

given Rp(f;), X7(fi) are the high accuracy complex backscatter coefficients of
test target T at frequenct f; ( or fiy 1), and N', N' are i.i.d. Gaussian noise
samples. Note that the distribution if Wl fi) is going to be dependent on Ap(f;)
and the distribution of Ay(f;). This may be visualized in Figure 49. This graphic
description of the addition of coherent noise to a large and small target shows the
strong dependence of standard deviation of Wy (f;) on the uncorrupted amplitude
AT(f;) of the data point. Therefore targets with large RCS values are biased
toward having W features that are less corrupted for a given noise power.

An understanding of the relationships between the distributions of Wu(f:) and
Au(f;) for given values of A7(f;) and levels of noise power is important in order
to determine sensible values of p. To accomplish this, a study was conducted by
first selecting targets with a wide range of backscatter amplitudes. The standard

deviation of the W features were estimated as described in Degroot [10] by:

)
100 N ) 5
Wi T glg > (min ("V’I‘(fi) - ‘V]r’(fi))) (6.18)
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?
where Wr(f;) is the high accuracy W feature and WT(f;) is the rth independent .
\J
corrupt W feature. The min statement specifies the minimum angle between the
values to eliminate branch cut effects. In a similar manner, the standard deviation
of the corrupted amplitude features was calculated by Eq. (6.19). |
_1. [
1 [100 i )2
- — e— A . —_— r . .
UA(fi) 99 .,.-z—:l(A‘(fl) AT(fl)) (6.19) ]
]
Estimates of Ty (f;) Versus A(f;) at noise power levels of 10 dB-sm and 20 dB- f
) .'T
sm are shown in Figure 50. Note that T (£) is highly dependent on both A(f;) ]
1
and the noise power. As a result, one may desire to weight the distance between an :
'
unknown 1 feature at frequency f, and the catalog ¥V feature at f, dependent '
- L]
on the amplitude feature 4, at that frequency. The standard deviation of the !
amplitude feature (o"[i(f )) was found to be almost independent of A(f;) and only :
1 ~
dependent on noise power. Estimated values were o i, ~03sm and 1.0 sm at 3
() g
noise power values of 10 dBsm and 20 dBsm, respectively. The previous study
led to the development of two W feature distance measurements. The standard A
amplitude distance measurement given by: :
1 |
. N _ 9|2 J
di e = |3 (Aelfi) - Aulfi) (6.20)
=1
1
was used to measure the distance betweer. catalog target & and unknown target u ¢
\4
in terms of amplitude features. One ¥ distance measurement was given by: &
1
w o [N i .]2
Wy = | 3 (W) - Wu(£) (6.21)
=1
where Wi (f;) and Wy(f;) represent the catalog and corrupted 1V features respec- 2
tively. A second W distance measurement was given by: A
] LY
w N-1 N NE N
2dp = | 3 RUA)) (Welfi) - Wul£) (6.22) ]
=1 q
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Figure 49: Graphic description of feature distributions.
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W,
where R(A(f;))is a function of the corrupted amplitude of the test vector. R(A(f;)) i
o,
is a weight which approaches one for large values of A(f;) (”/i(f-) small) and ap- ':‘
1
proaches 0 for small values of A(f;) (aA-(f') large). Note that the amplitudes of o
! ..
the corrupted vector must be used and not the amplitudes of the catalog presently ':
- ]
. !
being tested agianst. Use of the uncorrupted catalog amplitudes would bias gd:‘“k 4
to be small for small targets and large for large targets, therefore hiasing the N
classification decision. ]
s,
6.3 Experimental Results ,‘ ’
.
!
Classification runs were made using Eq. (6.21) for 1(1':“'/‘, to determine the ,
effects of p on the classification algorithm. Figures 51, 52, and 53 show the results oy
of nine tests run over three separate frequency bands. Figure 51 demonstrates ’_
an average improvement of 6 dB-sm of noise power immunity using the weight of ‘:
o)
p = 1.0 over the small 2 MHz band. However, Figures 52 and 53 demonstrate a )

loss in performance as the ldL_Vk distance weight is increased. These results indicate

B AT

that the ldhvk distance measure is less than optimal since it weights all 11" features

equally, irregardless of the amount of corruption of the 11~ feature. Y,
-
A second set of tests were performed to investigate possible functions for ,?
R(A(f;)) given in Eq. (6.22). In this set of tests the weighting was set at p = 0.5. ‘
. -~
The two functons chosen for R(A(f;)) were: R
i Afi)
R ) = ——, 6.23 ]
(i) = 5% (6.23) ]
and ."
- 2 .\
ROA(S) = (240 (6.24) '
' 36.0 ]
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since a value of A(f;) = 36 meters corresponds to a RCS of approximately 1300
square meters, or 31 dB-sim, corresponding approximately to the largest RCS value
in the 5 target library at HF frequencies. .

Figure 54 demonstrates improvement in classification performance for the rel-
ative phase channel over the non-coherent channel, however the increase in perfor-
mance is less than that shown in Figure 51. Figures 55 and 56 show little or no
improvement in classification performance of the relative phase channel over the
non-coherent channel when utilizing the 9d, ; measure. Therefore our choices of
R(fi(fi)) are far from ideal.

Overall this study has indicated that for small frequency bands, the relative
phase channel described may improve performance over the non-coherent channel
if the relative phase estimates are used as described. However, at larger frequency
bands, the use of relative phase information proposed appears only to deteriorate
performance. This may be due to several factors. First, the development of the
use of the relative phase features has been based on intuitive judgement, and not
proven estimation theory. Therefore the use of the phase features while making
logical sense, may be far from the optimum use of relative phase as a classification
feature.

An alternate method of utilizing relative phase information involves estima-
tion of the unknown targets phase. Given a set of coherent bsckscatter amplitudes
one may use the Cross Correlation Algorithm to provide a maximum likelihood
estimate of the unknown target phase, thereby minimizing the conditional risk for
a uniform cost function. The phase estimate may then be used to aid in classify-
ing the target. Research has shown that use of the Cross Correlation Algorithm

will consistently improve classification performance over use of amplitude only

estimates [8].
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It is critical to note these results are highly dependent on the noise model
used in the study. Given a diffcrent noise model where the noise corrupting the

amplitude and phase features is independent, different results would he expected.
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Parameter Under Ohservation: p
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Parameter Under Ohservation: Individnal Distance Weightings
Channel Model: Relative Phase Channel

Azimuth angle: 45
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CHAPTER VII

FADING CHANNEL MODEL STUDY

7.1 Implementation

Multipath propagation is a common occurence in ionospherically propagated
signals. In the radar problem, multipath phenomena generally results in the re-
ceived signal being the result of the two or more signals adding in and out of phase
at the receive antenna. One signal, which travels the expected path, may be con-
sidered deterministic in nature. The other signals, which travel undesired paths,
may best be described as a stochastic process since the paths they take through
the ionosphere may be considered less stable. As a result, the propagation path
may best be described as a fading channel [27].

A fading model representing the estimation of features from multipath prop-

agated signals as shown in Eq. (7.1) was implemented in the RSSE program [28].
aF (f. ; . 1 3 (s
AL ()% ) = adp(£)e® T 1 (1-a®)2 Ap(£)2 (£} )i =1, N(7.1)

where aAp(f; )eI0T(fi) is the deterministic component, (1—02)-]7AT(fi VZ(f;)e92 (1)
denotes the faded component, and o is the weight of the deterministic component.
The parameter Ap(f; )e38(fi) is the high accuracy complex backscatter component
of target T at frequency f;, Z(i) is the random amplitude of faded component
taken from a correlated or uncorrelated random process, and 82 (i) is the random

phase of faded component taken from a correlated or uncorrelated random process.
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Construction of the simulated feature vector is shown in Figure 57. The
complex backscattered data are simply scaled by the chosen variable o, where
0 < a < 1, to construct the deterministic component. Construction of the faded

components are more complex. The magnitude of the high accuracy backscattered

Depfauci g

data is first scaled by (1 — 02)3’ to ensure the vector resulting from the sum of
the deterministic and faded components has a total power equal to the test set
vector used. Next, the random samples Z(i) are constructed by first generating
samples from a white zero-mean Gaussian random process witlr a variance (02) of
one. These samples are then passed through a filter with an impulse response h(i)

where i =0 to N — 1. The output process has an autocorrelation function given

by:

N-1
Rz(k)= Y h(i)h(k+i), -N+1<k<N-1 (7.2)
=0
as described in [9]. 3

The total power in the process { Z(i) } is then given by: :
N-1 o
Rz(0) = Y (h(i))* (7.3)
=0

Therefore, by selecting filter values h(z) such that the total power of the process

{ Z(i) } is one, the resulting power of the faded channel vector will be equivalent :
to the power of the test vector used. The filter values used were constructed from

the filter function by:

e-‘l’i

h(i) = i=0,...N—1 (7.1)

[V‘N

et } =

1
lc—zqu
where h(1) is the filter function, and ¥ is the correlation coefficient selected by user

the so that Rz(0) equals 1 independent of the value N selected. By increasing

¥ from zero ({ Z(:) } highly correlated) to infinity ({ Z(i) } uncorrelated) the ¢

103

L

e 0.8 Ak g LY [} L K 4 b - -« -
S O R R Y LA OO IO NN MR O YOS OO ) DO AT " KU I ‘ ’.\" n.



operator simulates various degrees of correlation between the faded components of
a given measurement vector.

The faded components are then weighted by the samples from the random
process { Z(i) }. Phase is assigned to each random faded amplitude by taking
samples from an i.i.d. process whose random variables are uniformly distributed
over the interval —m to +m. The resulting complex deterministic components and
complex faded components are then summed, producing the faded cl innel vec-
tor. Additive white Gaussian noise is then added coherently to the faded channel
vector as described earlier. The simnlated vector represents the output of a faded
channel with additive Gaussian noise. By applying the techniques described in
sections 4.3.1 through 4.3.3 to the faded channel vector, variations of the faded
channel model such as loss of phase information or the addition of an unknown
multiplicitive component may be synthesized. As a result, three faded channel
models with characteristics analogous to those described in 4.3.1 through 4.3.3
and titled channel 1F, channel 2F, and channel 3F respectively were investigated.

Three studies were conducted utilizing the faded channel model. First the re-
lationship between the deterministic component weight (a) and the classification
performance for the three channels was investigated. Next the correlation coefh-
cient ¥ was varied while maintaining a constant deterministic component weight.

Finally, direct comparison between the three faded channel models was conducted.

7.2 Deterministic Weighting Study

Figure 58 shows the the degradation of classification of channel Il as a is
decreased. Note that significant degradation of performanceis only found at a=0.5.
[ o4

Figure 59 shows a significant degradation of classification performance at a = 0.75

and a = 0.5 for channel F2. Classification using channel F3 demonstrates an
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Figure 57: Faded channel implementation block diagram.
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approximate 10 percent degradation in performance as « is decreased from 1.0 to
0.9, and from 0.9 to 0.75, as indicated in Figure 60. Thus, these figures indicate that
the performance of channel F2 may be severely degraded by a low deterministic
weight.

Figures 61, 62, and 63 are similar to the previous three figures with the ex-
ception of a smaller frequency band of 2 MHz. More significant degradation of
performance for channel F1 is noted at a=0.75 and a=0.5 as noted in Figure 61,
which was expected with the smaller frequency band. Figure 62 demonstrates a
decrease in performance of 25 % for a given noise power as o is varied from 1.0
to 0.9. Likewise, Figure 63 shows the same large decrease in the ability using
channel F3 as the deterministic weight is decreased.

Overall, the performance tends to degrade by a much larger amount for the
same changes in a at the 2 MHz band. Therefore the deterininistic weight becomes
an increasingly important characteristic of the faded channel when the frequency
band decreases.

A third set of Figures (64, 65, and 66) were constructed using one-half the
number of data points over the saine 8.0 MHz to 10.0 MHz band. Further decreases
in classification performance with decreased deterministic weighting are expressed

for all three channels as expected.
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Parameter Under Observation: Deterministic Weight
Channel Model: Coherent Faded Channel

Azimuth angle: 0

Start Frequency: 8.0 MHz

Stop Frequency: 12.0 MHz

Number of Frequencies: 10

Deterministic Weight: Key

Correlation Coeflicient: 0.5

2
-4
3
B
5

%00
i

900
J_l ) . &

i
000

o oo

800

600
PUR RS RT SAT VU N W S W S N0 S SO S0 W O S T |
T

700
.0

PERCENT MISCLASSFICATION
500 6

LEBLSLELLE Y_TJ\ v 177 LI A B

0 460 VSJO 6(;0 73

09 20 300
I

N\

400

LA SR B T T T
0.0 00 A 'g.o

ek
&
2
B
B

NOISE POWER (DB-SM)

ot

|

!

[

|
o292

I T |

ces-
N -TO O

|
|
l

Figure 58: Weighting study for coherent 4 MHz band faded channel.
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Parameter Under Ohservation: Deterministic Weight
Channel Model: Non-Coherent Faded Channel
Azimuth angle: 0
Start Frequency: 8.0 Mz
Stop Frequency: 12.0 M1z
Number of Frequencies: 10
- Deterministic Weight: Key
Correlation Coefficient: 0.5
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108

. i -
S IRICSNMPTRNCRICRND

ScScd

XA =
= -

‘I

-

NS PELY I A%

ST S8 5 S

B AL

SN L4 2.9

4

AJ,!'



PERCENT MISCLASSFICATION

Parameter Under Observation: Deterministic Weight
Channel Model: Multiplicitive Component Faded (‘hannel
Azimuth angle: 0

Start Frequency: 8.0 M1z

Stop Frequency: 12.0 MHz

Number of Frequencies: 10

Deterministic Weight: Key

Correlation Coefficient: 0.5
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Figure 60: Weighting study for multiplicitive 4 MHz band faded channel.
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Parameter Under Observation: Deterministic Weight
Channel Model: Coherent Faded Channel

Azimuth angle: 45 ,
Start Frequency: 8.0 MHz

Stop Frequency: 10.0 MHz -
Number of Frequencies: 10

Deterministic Weight: Key

Correlation Coeflicient: 0.5
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Figure 61: Weighting study for coherent 10 feature - 2 MHz band faded channel.
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Parameter lnder Ohservation: Deterministic Weight

Channel Model: Non-Coherent Faded Channel

Azimuth angle: 45

Start Frequency: 8.0 MHz -
Stop Frequency: 10.0 MHz

Number of Frequencies: 10

Deterministic Weight: Key

Correlation Coefficient: 0.5
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Parameter Under Ohservation: Deterministic Weight
(‘hannel Model: Multiplicitive Component Faded Channel
Azimuth angle: 45

Start Frequency: 8.0 Mz

Stop Frequency: 10.0 MHz

Number of Frequencies: 10

Deterministic Weight: Key

Correlation Coeflicient: 0.5
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Parameter Under Observation: Deterministic Weight
Channel Model: Coherent Faded Channel
Azimuth angle: 45
Start Frequency: 8.0 MIlz
Stop Frequency: 10.0 MHz
Number of Frequencies: 5

- Deterministic Weight: Key

Correlation Coeflicient: 0.5
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Parameter Under Observation: Deterministic Weight
Chaunel Model: Non-Coherent Faded Channel

Azimuth angle: 45

Start Frequency: 8.0 MHz
Stop Frequency: 10.0 M1z
Number of Frequencies: 5

Deterministic Weight: Key
Correlation Coeflicient: 0.5
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Figure 65: Weighting study for non-coherent 5 feature — 2 MHz band faded
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7.3 Correlation Study

Figures 67, 68, and 69 demonstrate the effect of the correlation of the faded
components on the performance of the three faded channels over a 2 M]l-z frequency
band. In this band, channel F1 does not demonstrate a decrease in classification
performance with increasing correlation. Channel F2 exhibits a 4% decrease in
performance when faded components become highly correlated as shown in Fig-
ure 68. Channel F3 again shows major improvement as a classification feature
when the correlation increases as displayed in Figure 69.

Figure 70 demonstrates the decrease in classification performance of chan-
nel F1 resulting from an increased correlation of the faded components. In Fig-
ure 71, channel F2 exhibits a significant change in classification performance at
¥=0.1, however the overall performance is quite poor in all cases due to the low
weighting (o = 0.75) of the deterministic component. Figure 72 shows the increase
in classification performance of channel 3 as the faded comnponents become more
correlated. The significant gain of 3 to 5 dB-sm in noise power immunity indicates
the correlation coefficient may be an important parameter in a faded channel which
exhibits an unknown multiplicitive component.

Figures 67 through 72 indicate several relations between classification perfor-
mance and correlation of faded components. Channel F1, which utilizes intrinsic
phase information tends to show a slight decrease in performance with an increase
in correlation. This may possibly due to the corrupted amplitude of the target
appearing consistently smaller (or larger) at each frequency due to the correlation
of the Z(i) samples. As a result, the target may appear to be closer to a smaller
(or larger) target in terms of the Nearest Neighbor Algorithm, and therefore be

misclassified.




The tendency of channel F2 to increase performance as the faded components
become uncorrelated backs up the previously developed theory. Illowever, since
channel F2 removes all phase information and passes only the noisy absolute am-
plitude backscatter components to the classifier, one may expect to see a greater
decrease in performance with increasing correlation than channel 1. There is no
strong indication of this behavior, however.

Channel F3 which adds the unknown multiplicitive component which must
e removed as described in section 4.3.3 demonstrates a significant increase in
performance with an increase in the correlation of the faded components. As
reasoned earlier, highly correlated faded components tend to make the target look
larger (or smaller) across the band. As a result, the average RCS of the unknown
target will tend to be larger (or smaller). The process of normalizing the corrupt
backscatter amplitudes to remove the unknown multiplicitive component also tends
to remove the average contribution of the faded component. As a result, the
normalized amplitude feature is more dependent on the deterministic component

of the faded channel, resulting in better classification performance.




Parameter Under Observation: Clorrelation
Channel Model: Coherent Faded Channel
Azimuth angle: 45
Start Frequency: 8.0 MHz .
Stop Frequency: 10.0 Mllz
Number of Frequencies: 10
* Deterministic Weight: 0.9
Correlation Coeflicient: Key
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Figure 67: Correlation study for coherent 2 MHz band faded channel.
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Parameter Under Observation: ("orrelation

Channel Model: Non-Coherent Faded Channel

Azimuth angle: 45

Start Frequency: 8.0 MHz -
Stop Frequency: 10.0 MHz

Number of Frequencies: 10

Deterministic Weight: 0.9

Correlation Coefficient: Key
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Figure 68: Correlation study for non-coherent 2 MHz band faded channel.
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Figure 69: Correlation study for multiplicitive 2 MHz band faded channel.
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Figure 70: Correlation study for coherent 4 MHz band faded channel.
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PERCENT MISCLASSFICATION

Parameter Under Ohservation: Clorrelation
Channel Model: Non-Coherent Faded Channel
Azimuth angle: 0
Start Frequency: 8.0 MHz -
Stop Frequency: 12.0 M1z
Number of Frequencies: 10
Deterministic Weight: 0.75
Correlation Coeflicient: Key
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Figure 71: Correlation study for non-coherent 4 MHz band faded channel.
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PERCENT MISCLASSFICATION

Parameter Under OQbservation: Cforrelation

Channel Model: Multiplicitive Component Faded Channel
Azimuth angle: 0

Start Frequency: 8.0 MHz

Stop Frequency: 12.0 MHz

Number of Frequencies: 10

Deterministic Weight: 0.75

Correlation Coeflicient: Key
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Figure 72: Correlation study for multiplicitive 4 MHz hand faded channel.
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7.4 Comparison of Faded Channels Performance

A final study was conducted to directly compare the performance of the
three channels for different correlation coefficients, deterministic weight_s, frequency
bands, and feature number combinations. Figures 73, 74, and 75 directly compare
the three feature types using a 2 MHz band for different values of a. Although per-
formance is relatively poor for both channels F1 and F2, channel F2 significantly

outperforms channel F1 for a = 0.75 and o = 0.5 (Figures 74 and 75 respectively).

Channel F1 significantly outperforms the other two for all values of a as shown.

A comparison of the three feature types for various values of ¥ is given in
Figures 76, 77, and 78. Figures 76 and 77 demonstrate that for a small ¥ (highly
correlated faded components), channel F3 may actually outperform channel I'2.
The figures also demonstrate the strong performance of channel F1 irregardless of
the correlation hetween faded components.

Figures 79 and 80 compare the three faded channels for two different values of
a. Both figures demonstrate the superiority of channel F3 over channel F2 in terms
of classification performance. In fact, the performance of channel F3 approaches

that of channel F1 for low noise power in Figure 80.

Figures 81, 82, and 83 demonstrate that the resulting performance from using

v‘":.

channel F3 features may be significantly greater than using channel F2 features

Py

irregardless of the correlation of the faded components. These figures also reinforce

T4 o

ety

the strong performance of channels utilizing phase information. It is important to

note, however, that classification performance of a channel with an unknown mul-
tiplicitive component (channel F3) may approach the performance of a channel
which maintains absolute amplitude as well as target phase information (chan-

nel F1). As the faded components become increasingly uncorrelated in Figures &1




and 83 respectively, the performance of channel F3 degrades, but still provides

relatively good classification performance at low noise powers.

Direct comparison of the three faded channels in term of classification per-
formance resulted in several interesting results. Most importantly, the superior
performance of channel F1 indicates that phase information concerning the target
is maintained even for relatively small deterministic weights (a = 0.5,0.75). There-
fore, a system which can accurately estimate intrinsic target phase is still desired
even if the propagation path is subject to a degree of multipath interference. Sec-
ond, the study indicates that under certain frequency band, deterministic weight,
and correlation conditions, the removal of the unknown multiplicitive component
from the output of channel F3 provides a set of features whose classification perfor-
mance rivals that of channel F1, and is better than the performance of channel F2.
Frequency bands of 4 MHz, deterministic weights of 0.75, and highly correlated
faded components tend to accentuate the normalized features compared to other
conditions.

It is important to note that given a propagation path modeled by these con-
ditions, which are far from ideal in the RTI sense, classification may be performed
using only relative RCS values. Furthermore, having the ability to estimate ab-
solute RCS would not provide an increase in performance. In fact, the use of
the corrupted amplitude estimates without normalization would seriously degrade
classification performance (Figure 81). In this case, even the ability to estimate
target phase would only decrease the misclassification percentage by four or five
percent at low noise power levels.

Overall, the study has indicated that if one is given a multipath propagated
signal, there is little need of a calibrated reference to estimate absolute RCS.

Rather, a stationary uncalibrated reference may be utilized to estimate relative
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Parameter Under Ob